GLOBAL WELL-POSEDNESS OF THE 3D PRIMITIVE EQUATIONS WITH PARTIAL VERTICAL TURBULENCE MIXING HEAT DIFFUSION By

نویسندگان

  • Chongsheng Cao
  • Edriss S. Titi
  • CHONGSHENG CAO
چکیده

The three–dimensional incompressible viscous Boussinesq equations, under the assumption of hydrostatic balance, govern the large scale dynamics of atmospheric and oceanic motion, and are commonly called the primitive equations. To overcome the turbulence mixing a partial vertical diffusion is usually added to the temperature advection (or density stratification) equation. In this paper we prove the global regularity of strong solutions to this model in a three-dimensional infinite horizontal channel, subject to periodic boundary conditions in the horizontal directions, and with no-penetration and stress-free boundary conditions on the solid, top and bottom, boundaries. Specifically, we show that short time strong solutions to the above problem exist globally in time, and that they depend continuously on the initial data. MSC Subject Classifications: 35Q35, 65M70, 86-08,86A10.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of Boiling in a Vertical Channel Using Ensemble Average Model

Simulation of turbulence boiling, generation of vapour and predication of its behaviour are still subject to debate in the two-phase flow area and they receive a high level of worldwide attention. In this study, a new arrangement of the three dimensional governing equations for turbulence two-phase flow with heat and mass transfer are derived by using ensemble averaging two-fluid model and ...

متن کامل

Global Well-posedness for the 2d Boussinesq System without Heat Diffusion and with Either Anisotropic Viscosity or Inviscid Voigt-α Regularization

We establish global existence and uniqueness theorems for the two-dimensional non-diffusive Boussinesq system with viscosity only in the horizontal direction, which arises in Ocean dynamics. This work improves the global well-posedness results established recently by R. Danchin and M. Paicu for the Boussinesq system with anisotropic viscosity and zero diffusion. Although we follow some of their...

متن کامل

Free convective heat and mass transfer of magnetic bio-convective flow caused by a rotating cone and plate in the presence of nonlinear thermal radiation and cross diffusion

This article explores the heat and mass transfer behaviour of magnetohydrodynamic free convective flow past a permeable vertical rotating cone and a plate filled with gyrotactic microorganisms in the presence of nonlinear thermal radiation, thermo diffusion and diffusion thermo effects. We presented dual solutions for the flow over a rotating cone and a rotating flat plate cases. Similarity var...

متن کامل

On the Local Well-posedness of a 3D Model for Incompressible Navier-Stokes Equations with Partial Viscosity

In this short note, we study the local well-posedness of a 3D model for incompressible Navier-Stokes equations with partical viscosity. This model was originally proposed by Hou-Lei in [4]. In a recent paper, we prove that this 3D model with partial viscosity will develop a finite time singularity for a class of initial condition using a mixed Dirichlet Robin boundary condition. The local well-...

متن کامل

Unsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010